

Engineering Clean Energy Systems

- Systems
- Strategy
- Concept definition phase
- Open critical reviews

Dr. Alex Pavlak alex@pavlak.net 22nd Annual INCOSE International Symposium - Rome, Italy - July 9-12, 2012

System Development Methods

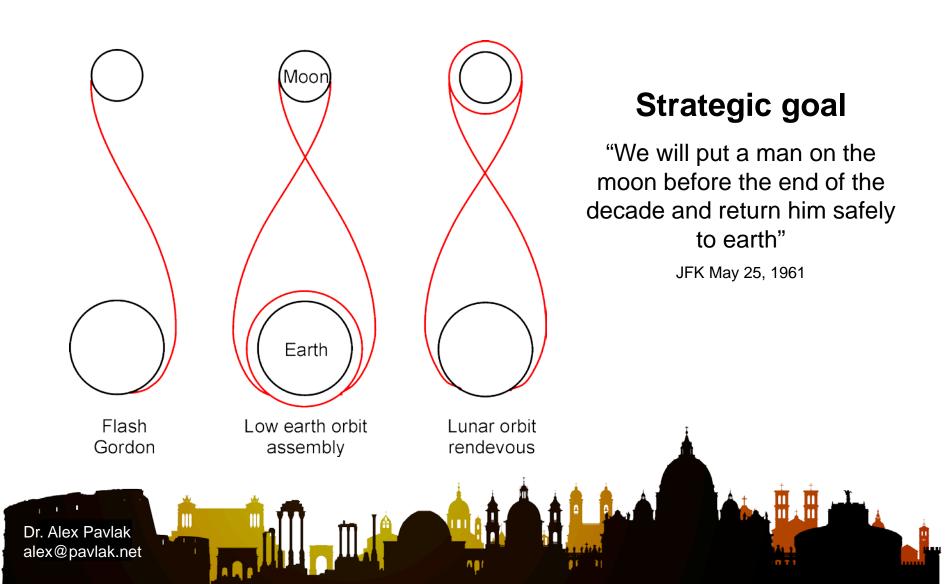
Strategic planning

- Characteristics Clear and stable goal
 - Start with a purpose, a vision of where you want to be
 - Choose a direction
 - Develop a plan to get there
 - Waterfall development
- Advantages
 - Goal provides priority
 - Focus on what's important
 - Don't do things that block the goal
 - Efficient systems
- Disadvantage

Dr. Alex Pavlak alex@pavlak.net

- Big mistakes from changing goals
- Example mature systems, high reliability

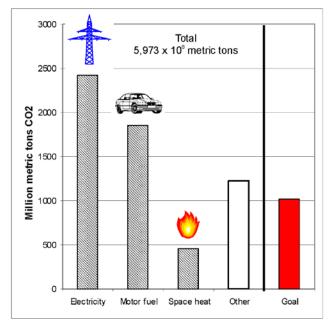
Agile development


- Characteristics Fuzzy goal
 - Iteration
 - Local optimization
 - Natural evolution
 - Rapid prototyping
 - Spiral development
 - Requires an inexpensive cycle
- Advantages
 - Adapts to changing requirements
 - Clarifies fuzzy goals
- Disadvantage
 - Dead ends, stranded technology
- Example Early internet, consumer products

Pavlak, A., Strategy vs. Evolution, *American Scientist, 98*, 2010, pp. 448-450

A strategic systems engineering success

Overall Strategic Goal


- Big reductions in fossil fuel consumption is inevitable
 - Fossil fuel is a finite resource
- Flexible time frame
 - Environmental concerns and climate change may accelerate schedule

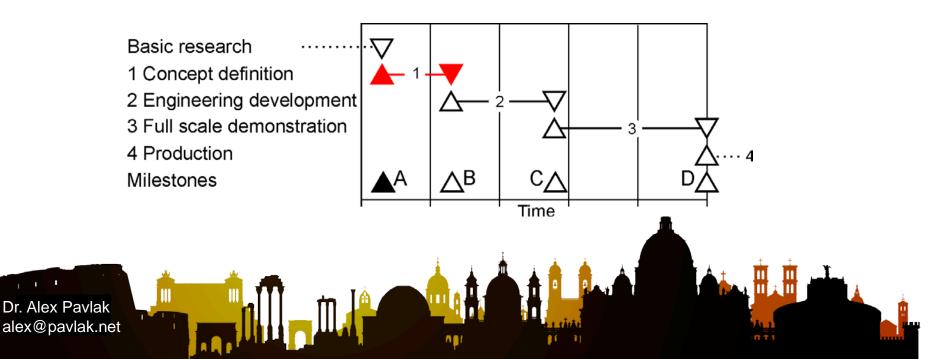
Big (90%) reductions in greenhouse gas emissions

- Consistent with Obama's Copenhagen goal
 - 83% reduction of CO2 emissions below 2005 levels by 2050

Allocated Requirement

- Red bar represents Obama's Copenhagen of 17% residual emissions
- "Other" includes difficult to eliminate applications
 - Chemical industry
 - Fuel for aircraft
- Zero carbon electric power allows many fossil fuel applications to be shifted to electricity

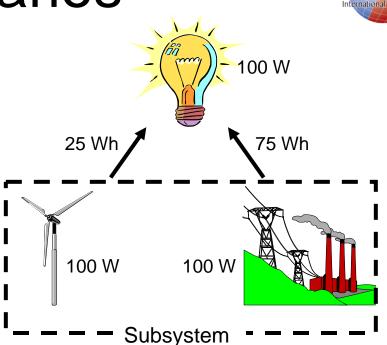
America's CO₂ emissions 2005



Concept Definition Phase

- Develop the full range of feasible scenarios
 - Based on goals (m/s A) and known technology
 - Establish technical constraints
- Compare them, tradeoffs
 - Provide technical recommendations
 - Society chooses a direction (m/s B), an informed value choice
- Phases 2, 3, 4 are agile

Electric Power System


- Systems Architecture 101
 - Systems are all about interfaces
 - "Partition the system into functional components with simple interfaces"
- Partitioning is critical with intermittent generators
 - Intermittent generators cannot stand alone
 - Must rely on "something else" to keep the lights on
 - Partitioning simplifies the interfaces

Wind Scenarios

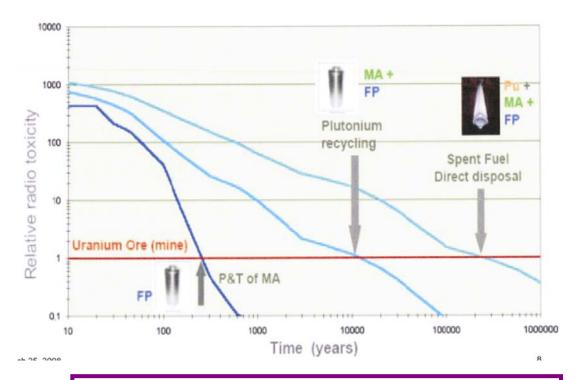
- Decompose the system
 - Closed, stand-alone subsystems
 - Subsystems have same reliability as traditional generators (~0.97)
- Wind + (something else)
 - Wind + (fossil fuel)
 - Wind + storage
 - Wind + hydro
 - Wind + biomass
 - Wind + (long distance transmission)
 - Wind + geothermal
 - Wind + nuclear
 - Combinations

- 1. Wind systems may not be clean
- 2. Value of wind is wholesale cost of fossil fuel
- 3. Wind has no peak capacity

Other Scenarios

What are the best systems for reducing emissions? Is there a dominant technology?

- Strategic scenarios are simple concept models of end state system configurations
 - Based on known technology
 - Ignore current policy and legacy systems
 - Anticipate probable improvements.
- Analyze systems in sufficient depth to capture the structural essence but no more.
- Provide a clear definition of the technical feasibility of various choices.
- To be followed by design reviews, management decision milestones, policy.


- Electric power
 - Nuclear
 - Smart grid
 - Wind
 - Coal with CGS
 - Solar
 - biomass
 - Geothermal
 - Tides
 - Ocean thermal gradient
 - Storage
 - Hydro
- Motor vehicle fuels
- www.pavlak.net/FoE Scenarios.pdf

Nuclear Scenarios

- Imagine 80% global nuclear power
 - Cheap
 - Safe
 - Sustainable ?????
 - Secure
- Legacy systems do not scale
 - Resource
 - Waste management
- Sustainable nuclear power
 - Breeders (U-Pu or Th-U)
 - Transmute long lived fission products

Nuclear fission has sustainable potential

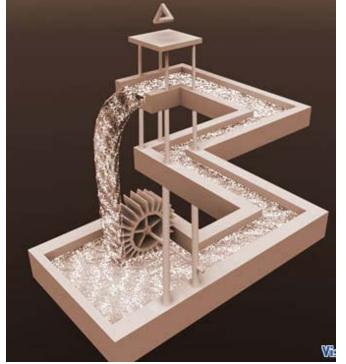
The French Model

- Electric power system 90% carbon free today
 - 80% nuclear
 - 10% hydro
 - 10% coal
- System design

Dr. Alex Pavlak alex@pavlak.net

- Level diurnal variations with oversized hot water heaters & pump storage
- Build reactors with modest load following capability
- Eliminate fossil fuel

Wind


- Politicians mandating EdF to add wind turbines
- Must also add natural gas to satisfy load
- Increasing grid emission

Open Critical Reviews

- Purpose
 - Does the system satisfy requirements?
 - Clarify issues and problems to be resolved
 - Provide a objective factual basis for value choices
- Open format

- State requirements/goals
- Fact finding Public hearing (webinar)
- Compare the system with requirements
- Publish comparisons seeking feedback
- Upgrade and document analysis based on feedback.
- Minority/majority technical opinions

Future of Energy Initiative

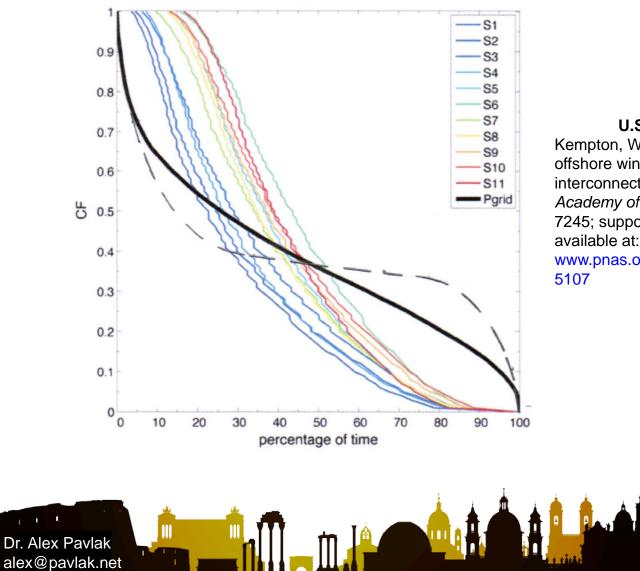
Tasks

- Intermittent system scenarios
- Nuclear system scenarios
- Mentoring
 - Other system scenarios
- Critical reviews

Charter

- INCOSE-CC Initiative
 - Subgroup of INCOSE P&E working group
- Open source collaboration
- Partner with existing professional organizations
- Fund expenses for system scenarios development

Global Leadership



- We have clear and stable goals
 - Big (90%) reductions in greenhouse gas emissions
 - Zero carbon electric power
 - Cheap, safe, sustainable and secure nuclear systems
- Next step is classic concept definition phase
 - System scenarios
 - Intermittent generators
 - Nuclear
 - Everything else
 - Novel methods
 - Open critical reviews
 - Identify technically feasible choices
 - Partner with appropriate organizations
- We live in a world with no one in charge
 - Special interests have too much influence
 - Enormous legacy inertia
 - Need open independent system design

Power-%

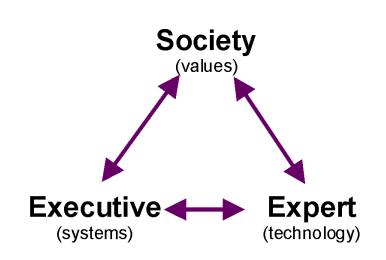
U.S Offshore, East Coast


Kempton, W., et al, Electric power from offshore wind via synoptic scale interconnection, *Proceedings of the National Academy of Sciences* 107:16, pp. 7240-7245; supporting information, Figure S-3, available at:

www.pnas.org/cgi/doi/10.1073/pnas.090907 5107

11

Capacity Factors



11

Architecture Governance

- Roles are separate and distinct
- No one role dominates
- Healthy tension between roles

- Executive INCOSE
 - Balanced coordination between experts and society
 - Encourages best practices: strategy, systems, design reviews
 - Technology neutral
- Expert Open source collaboration
 - Responsible for technical analysis, research & development, technical coordination
 - Technology bias
- Society
 - Responsible for value judgment
 - Chooses policy

So Many Stakeholders!

- One challenge to clean energy systems development is the number, diversity and innumeracy of stakeholders
 - Energy affects everyone and everyone has an opinion
- Strategy will be to partner with existing professional organizations
 - Invited papers
 - Critical review sessions

